
Journal of Mathematical Chemistry 8(1991)77-87 77 
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Abstract 

Human and machine recognition skills are discussed, though not comprehensively 
reviewed, and some of the difficulties are illustrated by algorithms written to search for 
Hamiltonian paths in polyhexes. The most successful strategy for this is based upon the 
"branching graph", a recently introduced graph-theoretical device which can aid the 
recognition of edges that are not part of a Hamiltonian path. Another, more widely 
applicable approach that is interesting, although in this preliminary form only a little 
better than random methods, uses the metaphor of biological evolution, and tries to 
"breed" and "grow" paths subjected to "natural selection". 

1. General introduction 

This work has its origin in the practical need for an easy means of transmitting 
the connectivity of chemical structures from a computer keyboard. For this short- 
term purpose, a code must be unambiguous but need not be unique, and a convenient 
technique is to define the structure as a set of connectional differences between it 
and a chain of the same size [1]. To be sure of achieving the simplest code value, 
it is of course necessary to identify a Hamiltonian path (one that visits every vertex 
just once) if one exists (there are sometimes other reasons too for wishing to 
identify a Hamiltonian path [2-5]).  Questions that then arise are: (i) which graphs 
are Hamiltonian, and how many paths or circuits do they have (the famous and 
intractable "Hamiltonian problem" [6]), and (ii) how does one find such paths? The 
distinction is not always sufficiently clearly made. "Enumeration", a term frequently 
used in mathematical chemistry, has two related but distinct senses in the English 
language: "the action of ascertaining the number of something" and "the action of 
specifying seriatim" [7]. Completion of the latter gives the former, but any prior 
knowledge of  the former does not necessarily help the latter. This more practically- 
oriented task belongs to a class of what can be very subtle recognition problems. 
Here, it was hoped to refine, improve and cross-check previously reported computer 
algorithms [2] and to clarify, just a little, some of the broader (and perhaps sometimes 
rather subjective) issues involved in attempting to mechanise the skills involved. 

Since recognition is a crucially important skill possessed by all living organisms, 
and one that is essential for survival [8, 9], it is not surprising that the literature on 

© J.C. Baltzer AG, Scientific Publishing Company 



78 E.C. Kirby, Recognition of Hamiltonian paths 

the subject is an immense one, spanning many disciplines (e.g. robotics, computer 
science, cognitive psychology, neurophysiology, and so on), and no attempt is made 
here to summarise and document it. In mathematical chemistry, the concept has not 
been explicitly considered very often (but see Hall and Dias [10] for a recent 
example), although a few attempts at using graph invariants for recognition 
purposes have been made, e.g. [11, 12]. There is also some semantic overlap with 
other terms. Examples from the titles of recent papers (not an exhaustive list) are 
"similarity" [ 13-  15], "comparability" [ 16], "shape" or "seeing" [ 17], "perception" 
[18], and "coding" [19]. 

Objects in 3-D space are generally apprehended visually, and visual recognition 
is perhaps (although not certainly) the most highly developed form in humans. 
Sensing has several components - such as the exploration of boundaries and contours, 
colour, reflectivity and degree of light scattering - from which we infer the size, 
shape and texture of objects in everyday life. The boundaries of objects and their 
associated visual discontinuities seem to play a particularly important role [20, 21 ]. 
We do not yet understand how we recognise objects. Thus, Longuet-Higgins [22] 
recently noted that: "It seems fair to say that we simply do not know how the shapes 
of three-dimensional objects are represented in the long-term memory, how these 
representations are established in the first place or how they are deployed in the task 
of visual ident i f ica t ion. . . " .  

There is a temptation to liken the brain to a computer (and clearly there are 
fruitful similarities), with the implication that with the right software design, any 
skill can be "taught" to a computer. However, the philospher Searle [23] has sceptically 
remarked upon a persistent tendency to interpret brain function in the vocabulary 
of current technology, and the ideas that the brain is some kind of serially processing 
digital computer, or an extended network, are merely recent examples from a succession 
of metaphors that have been used. It is certainly true that many human skills of 
generalised intelligence have not proved easy to mechanise [21]. In particular, it is 
the combining of "common sense" with the imaginative kinds of skill of  which 
recognition seems typical that seems to be very difficult. Nevertheless, despite such 
reservations, it is always worth asking whether even quite simple computer methods 
can be useful for a given task. 

2. Computers and the recognition of graphs 

Subjectively at least, and for a limited range of problems which perhaps are 
endowed by our evolutionary history [8,20], there are some striking differences in 
our behaviour during recognition and how a computer has at present to be programmed 
to do it. Consider (1), (2) and (3) for example. The difference between them to the 
eye is immediate, and apparently no calculations or logical comparisons are needed, 
and the same holds true for much more complex objects such as facial images. It 
is of course important to remember that this feeling may be an illusion; the steps 
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may merely be invisible to us, just as low-level machine instructions are to a high- 
level language programmer, and not experienced in this way. It is difficult to construct 
a really satisfactory model in computer memory. The traditional adjacency matrix 
(or its condensed form as a list of  edges or a connection table) of  gi'aph theory 
seems intuitively clumsy to use. In part, this is so because (ignoring any symmetry- 
induced redundancies) there are N! possible equivalent adjacency matrices for any 
graph on N vertices, so that in order to specify a unique one, special rules must be 
written, e.g. [24,25]. Various other coding methods (e.g. [13,26-28])  work well, 
but some have restricted application. 

In the case of  (1)- (3) ,  the difficulty of  a multiplicity of  adjacency matrices 
does not arise because there are no branches. However these graphs are labelled, 
they can be identified by tracing through, checking for connectedness, while counting 
numbers of  vertices in each valency class. So it is useful to bear in mind that paths 
are much easier to recognise than branched structures, although there still seems to 
be no way with a conventional computer program to confer the ability to "see" the 
graph as a whole. A program must invariably behave like an animal confined to 
walking the edges of  the graph, unable to look in at it as a whole from "outside". 

It should also be noted that for the human observer the problem of distinguishing 
(1 ) - (3 )  has been helped by the use of a conventional geometric framework. If, for 
example, we are faced with an already drawn graph that is not a straight line 
drawing, but is represented by a tangled bundle of  string, then we are apt to be slow, 
and much less effective than a "blind" computer program in recognising it. Another 
task at which we are often slow is the trivial one of  establishing the size of a ring 
that has more than about eight vertices. However clearly it is drawn, we usually 
have to count the vertices rather carefully to avoid mistakes, whereas the machine 
will have this information instantly available in its adjacency matrix model. 

The difference between (4) and (5) when arranged in a tetrahedral configuration 
can, although this often needs a measurable time for mental effort, be recognised 
easily by sight, but is invisible in an~atljacency matrix unless some arbitrary convention 
for labelling branching vertices with their chirality is adopted. 

Consider also (6) and (7); we can again see the difference immediately, but 
an adjacency matrix does not have this information, and additional and separate 
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concepts like link numbers and knot theory [29] must be invoked. (Note: hydrocarbon 
structures like (7) would be chemically feasible with larger rings only, but that is 
irrelevant here.) 

3. Hamiltonian paths and circuits in polyhexes 

In the light of the foregoing discussion, it is of interest to consider Hamiltonian 
paths [30, 6] in polyhexes. The problem of identifying these paths retains a fascination, 
because on systems of only moderate size it can be surprisingly difficult to see one. 
There are a number of Hamiltonian paths in the polyhex (8) for example, and you 
the reader may see one immediately. Nevertheless, in recent work two scientists 
originally formulated structure (8) as a possible example of a completely non- 
Hamiltonian polyhex! The skill varies among individuals, and tends to improve 
somewhat with practice. 

(8) 
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Here then is a recognition task that is not difficult merely because of the 
tedium of  processing a long list, but is also inherently difficult because of the large 
number of confusingly similar but invalid paths within a given structure. Can a 
computer algorithm provide assistance? 

3.1. A SEARCH FOR HAMILTONIAN PATHS USING BRANCHING GRAPHS 

It is important to appreciate that the act of recognition involves two things: 
the object, and what of significance the object excludes. An analogy may be drawn 
to the activity of sculptors who, at least when working from a block, must know 
what material needs to be removed [9]. This is the strategic basis of the use of 
"branching graphs" (see appendix for definitions). 

There is a one-to-one correspondence between the 2-factors of a polyhex (P) 
and the 1-factors of its branching graph B(P) [31], and erasure of the edges of a 
branching graph 1-factor from the polyhex leaves a 2-factor. Figure "1 shows an 
example. This enables one to enumerate the 2-factors of P by enumerating the 1- 
factors of B(P), and so to find any Hamiltonian circuits (which are connected 
2~factors) that exist. For some other work on 2-factors, see [32-37].  

The concept of 1-factors as being a subclass of more generalized "k-branch- 
factors" enables any subgraphs with just two disjoint branching vertices to be 
identified by a similar process of edge erasure. A k-branch factor is a set of disjoint 
edges that accounts for all but k vertices (see appendix). Derived from a polyhex, 
the analogous "factor" - a doubly branched subgraph - can have one of only two 
possible forms, and both are traceable in an obvious manner provided that the 
"factor" is connected, so that Hamiltonian paths as well as circuits can be identified 
(exemplified by perylene and pyrene in fig. 1). If the only possible k-branch factors 
have k > 2, then the polyhex is untraceable. (Note: it is possible to formulate rules 
for constructing many Hamiltonian and non-Hamiltonian polyhexes [2] but they are 
rather clumsy to use in practice.) 

When this technique is applied as a computer algorithm, a connection table 
for the branching graph is derived from that of the parent polyhex and searched for 
k-branch factors [38]. Hamiltonian paths or circuits are stored as arrays of vertex 
numbers. 

3.2. OTHER METHODS OF SEEKING HAMILTONIAN PATHS 

Because Hamiltonian paths can be so difficult to see, it is highly desirable 
that some independent alternative algorithms be developed to provide a check on 
results. 

3.2.1. Random searching 

Apart perhaps from the statistically hopeless method of guessing at completely 
random sequences of  vertices, this is the simplest approach. A starting vertex is 
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Triphenylene has benzene as its branch- 
ing graph. 

© 

Benzene has two 1-factors, and erasure 
of their "double" bonds from the tri- 
phenylene graph in each case elicits a 
2-factor, one of which is a Hamiltonian 
CirCUit. 

© - -  © © 
© 

The perylene graph has only one[  ~ ~ ~ 
branching graph 1-factor, and this gives 
a disconnected 2-factor. The branching 
graph of pyrene has no 1-factor. So these 
graphs have no Hamiltonian circuits. 

Z 

On the other hand, their branching graphs 
do have 2-branch factors, and some of 
these give traceable subgraphs. 

+ 

Fig. 1. The recognition of a Hamiltonian path or circuit following recognition of edges 
(identified via the branching graph) that are irrelevant (see appendix for definitions). 
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selected at random and a path traced from it through the connection table. Whenever 
a branching vertex is encountered, a choice of direction is made at random. The path 
is continued until no further progress is possible without revisiting an already used 
vertex. If at this point all vertices have been accounted for, then a Hamiltonian path 
has bccn found, and the possibility that this may be part of a Hamiltonian circuit 
can quickly be checked by seeing whether the last vertex is adjacent to the first one. 
Otherwise, the trial is abandoned and another one started. 

As one might expect, this method is quite effective for small systems, but the 
time needed increases very rapidly with increasing size. 

A modification in which failure is followed by reversal to the last branch, 
seeking for a new route, does not improve matters, presumably because the program 
often wastes too much time checking clusters of paths that all emanate from an early 
unsuitable branching point. 

3.2.1. An "evolutionary" search for Hamiltonian paths 

In this, subgraphs of a polyhex are treated as "animals" that can grow and 
reproduce, by borrowing as a metaphor the workings of biological evolution [39]. 
Several approaches to implementation were tried. In the most successful so far, the 
set of edges is regarded as a set of "cellular automata" (see, for example, Wilson 
[40]) which may be switched on or off. A "parent", consisting of a random subgraph, 
"breeds" a certain number of copies of itself, each of which is vulnerable to some 
random switching on or off of edges ("genetic mutation"). These "children" then all 
grow as far as possible, becoming "adults", according to set rules, and selection 
criteria are applied to find a new parent for breeding. As before, the essential 
structure is held as a connection table, and edges are "switched off" by giving the 
appropriate vertex numbers in the table a negative value. The scheme is illustrated 
with a single imaginary example in fig. 2. 

Even these preliminary and little-optimised results (table 1) do seem rather 
better than those from random effects alone for systems beyond a certain size, 
although further optimisation is desirable. For small structures, a random search is 
more effective, because less complicated programming overheads are needed. The 
most substantial difficulty is probably the devising of suitable selection criteria, and 
this raises an interesting question: how can a subgraph best be characterised, if 
indeed it can at all, as being more or less "nearly Hamiltonian" with respect to the 
graph as a whole? At first sight, it might appear that the one with the longest 
unbranched path should be selected. This is not necessarily so however, for a longer 
path may have assumed a geometric configuration that inhibits further growth, and 
be less suitable than some more branched candidate. The best one must be a subgraph 
that requires fewest changes to convert it to a Hamiltonian path, but this is difficult 
to quantify in any simple manner until it can be done (redundantly) in retrospect. 
In this trial, a maximum value of the expression V2/(V 3 + 1) was sought (+1 in the 
denominator is needed to avoid the possibility of dividing by zero). 
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Polyhex P for checking. 

Two children: suppress all P's edges 
except for a few chosen at random. 
Allow these to grow as far as possible 
in accordance with the rules. Choose 
the resultant graph with the most degree 
two and the fewest degree three vertices 
to continue with as the next parent. 

Two grandchildren: obtained by copy- 
ing with mutations, followed by growth. 
Repeat the selection. 

Repeat the sequence 

And again: here, one of the "mutations" 
is a Hamiltonian path; the routine 
terminates. 

{ 
{ v2 =20 

v3 o j . . ,  / 

I 
I I 
I 

1 "x 

/ 

[ v2= 14 ~ ~  v3 5 

• b i s 

1/2= 16 V3=l 

V2= 18 V3=2 

V2=18 
V 3 1 

I V 2 =  1 8  v3 0 

V 2 = 18 

C ~  v3=2 

V z = 18 
V 3 = l  

Edges of a "parent" graph after random changes have been made. 

Edges generated by successively adding terminal edges to terminal 
vertices of the above. 

Edges generated by bridging pairs of terminal vertices after the 
previous process if complete. 

Fig. 2. An example of a possible sequence during an "evolutionary" approach 
to Hamiltonian paths. Note: The selection and growth techniques shown are 
examples tried from a number of possibilities, but probably they are not optimal. 
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Table 1 

Some rough comparisons of the time to discovery a) of a Hamiltonian path 
or circuit by three search methods (see text for details) 

Random B r a n c h i n g  Evolutionary 
search graph method search 

A linear polyacene 
with 10 hexagons: 

Mean 18.45 b) 40.4 
Standard deviation 23.43 22.6 
Range 2-93 11-96 
Sample size 22 22 22 

Polyhex (8) 

Mean c) 12.64 2745 
Standard deviation 10.73 - 
Range 2-41 972-6275 
Sample size 22 4 

~)Time in seconds, running on a Compaq SLT286 portable computer. 
b)Always <0.5 seconds. 
C)No success in 5 trials lasting up to 4000 seconds. 

It is an attractive feature of  the strategy, however, that there does not need 
to be a perfect ordering. It is sufficient that a high value of  the selection parameter 
for a subgraph be associated with there being required, just more probably, less 
reconstruction to become a Hamiltonian path. For the same reason, that the method 
does not depend on any one particular sequence of mathematical operations, it 
should in principle be widely applicable. 

3.3. POLYHEX INPUT AND DISPLAY 

A polyhex (in an arbitrary orientation, but with some edges vertical) is encoded 
by entering the rectangular coordinates of  the hexagons. The program assigns a 
unique number in an arbitrary though systematic way to each vertex of each hexagon 
as the latter is given. The numbers are stored as the elements of a rectangular matrix 
in accordance with the (slightly distorted) two-dimensional geometry of the polyhex 
(cf. [26]). At the same time, a connection table is also built up and stored. A simple 
but useful representation of  the polyhex, or any subgraph of  it, can be composed 
of  ASCII characters and screened or printed out for recognition from the information 
in these two matrices. 

4. Program code 

The algorithms and routines described here were implemented in compiled 
Borland TurboBasic v l.0. 
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Appendix 

GRAPH THEORETICAL DEFINITIONS USED 

Polyhex: A polyhex is a network of regular hexagons such that any two of  them 
are either disjoint of  have a common edge. For some recent introductory reviews 
of  the subject, see [41-44] .  

Benzenoid: Although the nomenclature is not universal, the term benzenoid is often 
used to refer to the subclass of polyhexes that have 1-factors. 

Hamiltonian path: If a graph has one, this is a path that visits every vertex just  
once. If such a path can be continued to the starting vertex, then it is a Hamiltonian 
circuit. These graphs can be described as traceable, and a graph with a Hamiltonian 
path (but not a circuit) is sometimes referred to as being semi-Hamiltonian. A graph 
that is non-Hamiltonian means here one that has no Hamiltonian path and no 
Hamiltonian circuit. 

1-factor: If a graph has one, it is a set of  disconnected edges that can be drawn 
to include every vertex, so that all vertices are of  degree one. It is equivalent to the 
set of "double" bonds within a Kekul6 structure. 

k-branch-factor: This is a set of  disconnected edges that can be drawn to account 
for all but k of  the vertices (where k is even). The device is defined by generalising 
the concept of  a 1-factor using, as an analogy, the relationship in organic chemistry 
between principal resonance structures in general, and Kekul6 structures in particular. 
So, using this nomenclature, a 1-factor is the same as a 0-branch-factor. 

2-factor: If a graph has one, this is a set of  one or more rings that can be drawn 
to include every vertex, so that every vertex is of degree two. If a 2-factor consists 
of  only one ring, it is called a Hamiltonian circuit. 

Branching graph: The branching graph of  a polycyclic graph is a special subgraph. 
Each vertex of  the parent graph G appears in its branching graph B(G) if and only 
if it is a branching vertex. Each edge of  G appears in B(G) if and only if it connects 
two such branching vertices [2,45]. 
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